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ABSTRACT 

Many problems in operations research require the maximization or mini- 
mization of a suitable payoff function subject to various constraints. Lagrange 
multipliers are classically used for this type of problem, however, the treat- 
ment given this technique by most texts requires that the payoff and constraint 
functions be at least differentiate at the extremizing point. This paper shows 
that the Lagrange multiplier concept can be independent of differentiability or 
even continuity of the functions involved. It also gives the reader a geometric 
insight into the workings of the multiplier. Simplifications possible, if the 
functions involved are homogeneous,are displayed. The treatment is heuristic 
rather than formally rigorous. 
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I.   INTRODUCTION 

Many problems in operations research require the maximization or mini- 

mization of a suitable payoff function subject to various constraints.   Lagrange 

multipliers  (LMs)   are classically used for this type of problem, however, 

the treatment given this technique by most texts requires that the payoff and 

constraint functions be at least differentiable at the extremizing point.   This 

paper indicates that the LM concept can be independent of differentiability 

or even continuity of the functions involved.   The ideas presented follow 

closely those of Hugh Everett in reference (a).  The reader is given a geometric 

insight into the workings of the  LM .   Simplifications which may result, 

if the functions involved are homogeneous,are displayed.   The general treat- 

ment is heuristic rather than formally rigorous.  Many examples (see appendix) 
have been worked out. 
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II.   THE DIRECT METHOD - MAIN THEOREM 

The  LM concept retains utility even when the functions involved are al- 

most completely unrestricted in character.    The technique for using the   LM 

in this context will be referred to as the "direct method" in contrast to the 

"classical method" which involves setting partial derivatives equal to zero. 

It is desired to maximize (or minimize) a function H(x) subject to 

constraints g. (x) = C., i = 1 m.   Except for being real valued, no 

restrictions are imposed on these functions.   The variable "x" may have any 

set whatever as domain; this set will be called the "strategy set" and will 

be designated "S".   The theorem which follows sets the stage for the use of 

the  LM in solving this type of problem. 

Theorem:  (direct method)      Let \., i = 1,. , .,m  be fixed, arbitrarily 

chosen, real numbers.   Define  F(x) as follows: 

F(x)=H(x)-^Xigi(x) 

Suppose that x* is a point in S which maximizes   F(x)  in comparison with 

all other points in S .   Then x' maximizes  H(x)  in comparison with all 

the points x in S which fulfill the constraints  g.(x) = g.fr')   , 

Proof:     By definition of x* ,   F^') ^ F(x) for all  x in S .    Substituting 
for F(x): 

Hfr') -^X.g.fx')  :> H(x)   - /X.g-fr) for all x in S . 

If attention is restricted to all x in S which fullfill the constraints 

g^x) = g^x1) for all values of i,   then the summations are equai and can be 

cancelled from the inequality, leaving Hfr')  ^ H(x) for these particular 

x in S,   which was to be proved. 

The following comments are designed to highlight the important points in 

the theorem, and to anticipate questions which may have occurred to the 
reader. 

Comment 1: The numbers X., i = 1,. . .,m are the LMs and are fixed 

numbers which are chosen before the maximization is accomplished. This 

is in sharp contrast to the classical method in which the LMs  are left in the 
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form of undetermined parameters until the end of the process.   This is one of 

the prices that the direct method must pay because it allows the functions 

involved to be non-differentiable.   In special cases it is possible to retain the 

LMs as parameters in the direct method also (see section VIII). 

Comment 2:    F(x)  is written in the form  H(x) - ^.(x).   This is also the 

way in which  LMs  are used in the classical method.   Other forms of F(x) 
are possible in both methods (section VIII). 

Comment 3;     The theorem states "Suppose that x'  is a point in S which 

maximizes  F(x). . .".   Note that  F(x) is to be maximized, specifically. 

The finding of an inflection point or a relative maximum will not do.   However, 

there is no guarantee that a maximizing point,   x',   exists in S .   The theorem 
is applicable only when such a point exists. 

Comment 4;   By merely reversing the inequalities, the proof of the correspond- 
ing theorem for the minimum of H(x)  is obtained. 

Comment 5;    The theorem proves that  x* yields the absolute maximum of 
H(x), as opposed to a relative maximum. 

Comment 6;    The point x' is _a_ point in S which maximizes  F(x).  In case 
there are several such points, the proof still holds. 

Comment 7;   The point x' is obtained by maximizing F(x) without regard to 

the values taken by the constraint functions.   This is precisely why the LMs 

are valuable;  they turn a maximization problem with constraints into a 
maximization problem without constraints. 

Comment 8;    The theorem says that x*  maximizes  H(x)  subject to the 

constraints g^x) = g^x').  The original problem was to maximize  H(x) 
subject to g^x) = C. .  There is no assurance that g.fx') = C.  for any or all 

values of i,   hence the original problem has not been solved yet.   Recall that 

the  LMs were chosen arbitrarily.   It may be possible to cause g.fr') = C. 

for all values of i by suitably modifying the LMs and repeating the process. 
If this is possible, the direct method solves the original problem.   In many 

OR problems, however, one is not interested in maximizing H(x)  subject 
to specific constraints, but rather in exploring the entire range of what can 
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be obtained as a function of the constraint values,   C. .   In this case the 
i 

process of sweeping through a range of values of the  LMs  may be completely 
adequate. 

The direct method, then, boils down to the following sequence: 

Step 1:    Pick the   LMs  arbitrarily.   Section III will provide guidance for 

correcting this initial guess, if necessary. 

Step 2:    Form   F(x) and maximize it (or minimize, if desired), obtaining a 

maximizing point x*, and corresponding values gCx')   of the constraint 
function. 

Step 3:    If g-fr') = C.  for all values of i = 1,. . .,m then the original 

problem is solved and the maximum value of H(x),   subject to g.(x) = C, 

is given by  Hfr1) .   If g.fr')?4 C.  for all values of i,   it is necessary to 

pick new values of the  LMs  and repeat the process, aiming for convergence 
of the values  g.Cx') to C.. 

An example of the direct method is given in the appendix (example 1). 

H(x) and g(x)  are differentiable, but S  is a collection of discrete points, 
and the classical method does not work. 



III.   im-ERPRETATION OF THE LAGRANGE MULTIPLIER 
A'   The g,H plane 

This section is intended to promote geometric insight as to why the LM works. 
One constraint function,  gfr). will be used in this discussion, but the results hold for 

any number of constraints.  Letting x'denote a point in the set.   S.  which 
maximizes H(x) -  Xg(x)  in comparison with all other points in S,  we have 
F(x') = H(x') - \g(x') * H(x) -   Xg(x) for all x in S .  Solving thii for H(x): 

H(x) <: g(x) + Fix*) for all x in S 

From this basic inequality, most of the results of this section will follow 

immediately.   It will be useful to look at what is happening in the g. H plane. 

H 
* 

g(x). H(x)) 

FIGURE 1 
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As depicted in figure 1, to each point in S  there corresponds a point 

(g(x), H(x))    in the g,H plane.   In this manner the entire strategy set,   Sf   is 

mapped into some set, called the payoff set, in the g,H plane.   This payoff 

set is shown as the shaded region in figure 1.   In general there is no way of 

predicting just what t'ns payoff set is going to look like. 

The inequality  H(x)  * Xg(x) + Ffr*) for all x in S  says that all the 

points in the payoff set lie below the line whose equation is  H  = Xg + Ffr'). 

Futhermore, it says that this line touches the payoff set only at the maximizing 

point (or points, in case of non-unicity).   This immediately suggests that the 

act of guessing a value for  \ in step 1 of the direct method is no more than 

guessing the slope of a line in the g, H plane.   The act of maximizing  F(x), 

step 2, to find  F(x),   simply pushes the H-intercept up the  H  axis until the 

line H = Xg + F^') just touches the payoff set at the point  (g^*), Hfr')) as 

shown in figure 2.   In brief, X is the slope of the line, and the  F^*)  is the 

H-intercept. 

i ^j^y 
F(x")  , 

^yr        H = X'g + F(x^)  

>^/    ^^^^^^^X^^^-—(g(x'). H(x')) 

F(x')  ' 

• 

FIGURE 2 
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Figure 2 also illustrates how guessing new values of A. produces new 

values of the constraint function g(x) .   If the value gfr'),   initially obtained 

by steps 1,2, is not large enough, then \ must be made smaller, i.e. the 

slope of the line must be decreased.   The resulting line is illustrated in the 

figure above as  H = X'g + Ffr") .   It is obvious that the corresponding value 

g(x") cannot possibly be less than gfr').   This basic concept will help the 

analyst modify his guesses of \ in the proper direction to obtain the desired 
constraint values. 

Figure 2 illustrates anotbsr, very important point.   Suppose that after 

choosing a value for the  LM we obtain a maximizing point x' and a 

corresponding value gfr') of the constraint.  We know from the main theorem 

that this x' maximizes  H(x)  subject to the constraint g(x) = gfr') .  Suppose 

further that the value of the  LM chosen was positive.   Then figure 2 illustrates 

that you cannot do better, i.e., obtain a larger H(x),   by using any smaller 

value of constraint than gM .  This follows directly from the basic inequality 

obtained at the beginning of this section, and is one of the main advantages of 

using the linear form of F(x) .  Again, if the  LM is positive, then x* 

maximizes  H(x) subject not only to g(x) = gfr'),   but also to g(x) ^ gfr') . 

This is of paramount importance in problems where g(x) is a money or other 

resource constraint, and H(x)  is the payoff for expending g(x) units of the 
resource. 

B.   Definition of maxH, minH 

After the maximization operation is completed successfully, i.e., a point 

x'  is found which maximizes  H(x)  subject to g(x) = C,   it is intuitively clear 

that x'  depends upon the value of C .   (Otherwise, the constraint is having no 

effect on the problem and may as well be dispensed with.) It follows that 

Hfr'),   the resulting maximum value of H(x),   is also a function only of C . 

This function is denoted maxH(C), and the corresponding function resulting 

from minimizing will be denoted minH(C).   Example 2 displays a typical 
H(x) and the resulting minH(C). 



These functions have an important interpretation in the g,H plane.   The 
line in the g, H plane whose equation is g = C   is assumed to intersect the 
payoff set as shown below. 

H 

FIGURE 3 

The points in the payoff set which fall on this line are precisely those for 

which g(x) = C .   The point where the line g = C  cuts the upper boundary of 

the payoff set is the desired maximum value of H(x)  subject to the constraint 

g(x) = C .   It follows, therefore, that the entire upper boundary of the payoff 

set is the graph of the function maxH(C) (the lower boundary is the graph of 

minH(C)) provided only that the axes in figure 3 are relabled maxH(C),C instead 

of H,g respectively.    It is emphasized that H(x) and maxH(C) are completely 

different functions.   The properties of these two functions may be strikingly 

different, as will be illustrated in the following subsection. 

C.   The Lagrange Multiplier as a partial derivative 

Figure 4 displays the typical situation resulting from the successful use 

of the direct method.   For simplicity of notation and graphing only one 
constraint is used. 

~'  



H(x')   - 

F(x') 

FIGURE 4 

^ A maximizing point x' has been found which maximizes  F(x).  Also 

g(x') = C.   the desired value.  Assume that the function maxH is differentiable 
at this value  C.   If so. the line H = Xg + F(x') and the ftmction maxH must 

have the same slope at the point where the line touches the payoff set.   The 

slope of the line is  X and the slope of maxH at this point is  d(maxH)/dc 

(partial derivative in the case of multiple constraints).  This is the desired 

mterpret^tionofthe  LM.  The LM is the derivative of maxH(C) with 
respect to  C. 

This interpretation of the  LM will frequently permit a ballpark guess 

as to the proper value of the  LM when using the direct method.   This approach 
is particularly useful when the functions  maxH(C).   H(x),   and g.(x) have 
physical or geometric interpretations (example 3). 1 

Algebraic constraints may usually be formulated in a number of 
equivalent ways.   For example,   g(x. y) = ax2 + bxy + cy2 = D can be 

rewritten as  (ax   + cy2 - D)/xy = B .    In the first case the  LM will be 
d(maxH)/dD,   in the second,   d(maxH)/dB .   Since the effect of varying D 

is to expand or contract the geometric figure g(x.y) = D while varying B 

rotates the geometric figure, the numerical value of the LM will be different 

m tiie two cases.   As a result, an apparently trivial reformulation of a 

constraint may introduce or remove a pathology from the problem. 
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The foregoing interpretation of the   LM as a partial derivative depends 

upon maxH(C) being differentiable.   Frequently this is not the case;   this can 

occur in various ways.   One of the simplest is for the strategy set  S  to have 

only a finite number of points, as in example 1.   H(x)  is differentiable through- 

out most of the region of interest, but the payoff set contains only five points, 

hence maxH(C)  is nowhere differentiable.    On the other hand, it is possible 

for maxH(C) to be differentiable even when some or all of the functions  H(x) 

and g^x) are non-differentiable.   In example 8,   g(x) is discontinuous at the 

minimizing point for all values of C  greater than - 1.90, yet d(minH)/dC 

exists and equals  X for all such values of C . 

■10- 
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IV.   VARIOUS PATHOLOGIES 

Frequently there are several values of x  in S which will maximize F(x) 

for a particular value of the LM.   One common cause of this is illustrated 
below. 

F(x') 

FIGURE 5 

The payoff has a concavity in the upper envelope, allowing the line 

H = \g + F(x*) to be tangent at two places.   This illustrates another point. 

It is impossible to find a LM which will give rise to values between  C    and 

C2 without violating the inequality  H(x) ss Xg(x) + F(x'), which was obtained 

at the beginning of section III.   Such regions are called "gaps", characterized 

by a small change in the LM causing a large jump in the resulting value of the 

constraint.   One way of overcoming the effect of a gap will be discussed in 

section VIII; another method is mentioned in reference (a). 

In figure 5, above, two values of x  in  S are obtained which maximize 

F(x); one gives the value Cy the other, C2.   It is possible for there to be an 

infinite number of points in S which maximize F(x) for a certain value of the 

LM.   The most common cause for this phenomenon is illustrated in figure 6, 
next page. 

-11 
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F(x') 

FIGURE 6 

Between  Cj   and  C2  the function   maxH(C)  is a straight line segment 

with slope   X.   All of the points  x'   in  S which map onto this line segment 

will maximize   F(x) for this particular value of the LM, producing the same 

Ffr').   This phenomenon, the "constant multiplier", will probably be fatal if 

a computer is being used to solve the problem, unless the program is care- 

fully written.   Unless exactly the correct value of the LM is guessed, it will 

not be possible for the computer to arrive at any value of C  between  C    and 

C2.   On the other hand, if the exact value of the LM is guessed, the computer 

may try to print out all the points in  S  which maximize   F(x)  for this valu3 

of the LM.   Hence some care must be taken in the programming of the direct 

method to test for non-unicity of  x*  before ordering a printout (example 4). 

The preceeding figures illustrate that one value of the LM may give rise 

to many maximizing points  x'.   The opposite situation may occur, many 

values of the LM may give rise to the same  x'.   This situation is very com- 

mon, arising primarily by  maxH(C)  not being differentiable.   Figure 7, next 

page, illustrates how this may occur. 

12- 
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F(x') 

(gM. H(X')) 

FIGURE 7 

The function maxH has a sharp comer at one point, i.e.  maxH is not 
differentiable there.   It is clear that there are many slopes such that the 

resulting line will touch the payoff set, as shown in figure 7.  All these values 
of the  LM will give the same value for gfr') and for Hfr'). 
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V.   THE CELL PROBLEM 

There is a type of problem, the cell problem, for which the LM technique, 

direct or classical, is particularly well suited.   It is characteristic of this 

problem that  F(x)  can be written in the form 

In other words, in the cell problem we have  H(x)  =/.H.(x.)  and g(x) =Y>.g.(K) 

For simplicity of notation only one such constraint is shown in  F(x), but any 

number, each with its own LM, is permitted, as usual.   It is clear that  F(x) 

can be rewritten as a single sum 

Dw - W) 
of "n" terms, hence the name.   It follows that  F(x)  can be maximized by 

maximizing each cell separately (using the same value of LM), and summing 

the results.   A computer is especially useful for cell problems involving a 

large number of cells because computing time increases linearly with the 

number of cells rather than exponentially.   Even if the maximization in each 

cell is done analytically the computer is useful in summing results for each 

value of LM, and in otherwise "keeping the books". 

Typical problems of this type are weapon allocation or weapon mix 

problems.   Example 4 is of this type.   Reference (a) discusses cell problems 

in some detail.   Reference (b) contains an example of a cell problem in which 

the casuality rates in several shipping channels due to mine laying is maximized 

subject to constraints on the number and types of mines laid. 

•14- 



VI.   COMPARISON OF THE DIRECT AND CLASSICAL METHODS 

It is desired to maximize via the classical method a function  H(x)   subject 

to constraints g.(x) = C , j = 1, 2, ..., m.   Here, "x" is a point in Euclidean 

"n" space, i.e., "x" denotes (x. x ).   The notation "C" and MX" will 

similarly be used to denote the "m" space vectors (C. C   ) and (\ , ..., X   ). 

This is in contrast to the direct method where there are no restrictions on the 

character of the argument of H(x).   As normally presented, the classical 

method consists of the following steps: 

Step 1: Form F(x) = H(x) -2_]X.g.(x) where the LMs ai   parameters rather 
J    J 

than specific values. 

Step 2: Write down the system of "n" equations 

F     =  0 x. 
i 

where  F     denotes the partial derivative of  F  with respect to x , 
xi 1 

evaluated at "x". 

Step 3: These equations plus the constraint equations provide m+n equations 

in the m+n unknowns, x., ..., x , A.., ..., X   .   Solve these equations for the 1 n    l m ^ 
unknowns.   The resulting solutions (there may be several) represent stationary 

points for H(x) which must be tested separately to determine which represent 
relative extrema, stationary points only, or absolute extrema.   Example 5 
illustrates this method. 

The following comments are intended to clarify classical methods and to 
help pinpoint the differences between the two methods: 

Comment 1:  In step 1, the LMs are parameters rather than specific numbers. 

In order for this to work, the maximizing point x' must be a smooth, continuous 

function of both C  and   \.   This is because step 3 is equivalent to solving for 

the maximizing vector x' as this function of C  and   \, then using the constraint 

equations  to eliminate   X.   When non-differentiable functions are used, the 

function x^C, \) may not exist, or be expressible in any reasonable form. 

-15- 
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Comment 2:  Step 2 is analagous to maximizing or minimizing a function of one 

variable by setting its derivative equal to zero.   In the event that this procedure 

locates the absolute maximum or minimum of  F(x)  then the main theorem of 

section I provides a proof for the method. 

Comment 3:   Since the absolute maximum of  F(x)   is not the goal of steps 2, 3, 

the inequality of section III does not hold in the classical method.   This has two 

immediate consequences: 

(a) The pathologies of section IV do not occur.   In the case where a gap 

is present, the classical method will find the desired x* which maximizes  H(x), 

but this  x*  does not maximize   F(x) at the same time.   F(x) does have a 

stationary point at x1, however.   Example 6 illustrates a problem which is 

solved immediately by the classical method, but not by the direct method unless 

modifications are introduced to eliminate the gap. 

(b) The line H = Xg + F^*)  may pass through the payoff set without being 

anywhere tangent.   Such solutions correspond to the relative extrema which 

are not absolute extrema, or to stationary points which are neither. 

Comment 4:  When the classical method obtains the absolute extrema the 

resulting LMs can be interpreted as partial derivatives of maxH  or minH 

in analogy to the direct method.   This is suggested by the following:   Multiply 

each of the equations  F      =  0 by d     and sum, obtaining dF(x) = 0, and 
Xi Xi 

hence  dH(x) =V\ dg.(x).   Evaluating this latter equation at the extremizing 

point  x'  obtained in step 3, we have 

dH(x') =£Vdg (x'). 
J    J 

Intuitively, x*   is a function of  C, denoted x^C).   Hfr') is therefore  H(x,(C)), 

which is, in fact, maxH(C)  or  minH(C)  since x'  was extremizing.   This, 

plus the equations g^x') = C, suggests that d(maxH(C))  =y\.dC.  (or  minH, 

as desired) and hence that   \ .  is the partial derivative of maxH(C)  (or  minH(C)) 

with respect to C as desired. 
J 

-16- 
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VII.   HOMOGENEOUS FUNCTIONS 

When H(x) and g^x) are homogeneous functions, a good deal is known 
about the resulting functions  maxH and minH .   In particular, the single con- 

straint problem becomes quite susceptible to attack by direct method.   A function 

f(x) is homogeneous, of degree "p", if f(ax) =  apf(x) for all values of "a" (for 

this discussion, "x" will be treated as having components »%* but no restrictions 

on the^type of number of these components is desired).   The function f(xf y) = 

x+xy   is homogeneous ot degree 3.   The function f(x,y,z) = max(x,y,22/y) is 

homogeneous of degree 1, and illustrates a discontinuous homogeneous function. 

The homogeneity property imposes a certain regularity of behavior upon the 

function, nevertheless, homogeneous functions may he exceedingly complex or 

otherwise intractible.   Fortunately, homogeneity can frequently be determined 
by inspection in spite of the complexity. 

An "isobaric" function is a useful generalization of a homogeneous function. 
A function f(x)  is isobaric if a constant p  and a vector q exist such that 

f(a x) =  apf(x) for all values of a, where the notation "aV denotes the vector 

with components "a   V«.   The function f(x.y) = | xy2 | is isobaric since 

|(ax)(ay)    | = a    | xy    I, i.e., p,q1,q2 = 4, 2,1,   respectively.   It is easily 
seen that if all values q.  are equal, the isobaric function reduces to a homogen- 
eous function of degree p/q.. 

Theorem I;   Let  H(x) be homogeneous of degree p,   and let each of the 

functions  gi (x) be homogeneous of degree q. .   If the function maxH (or minH) 
exists, it is isobaric, and maxH(aqC)= aPmaxH(C). 

pro^:   Let Sj   be the subset of S for which the sector equation g(x) = C holds. 

Let S2 be the subset of S for which g<x) = aqC.   Using the homogeneity of 

each function g., it follows that if x  is a point in S1 then ax  is a point in 

S2 (multiply both sides of the equation g.fr) = C.  bya^).   Conversely, any 

point z in S2  can be written as ax where x is a point in S1.   It follows 
therefore, that 

-17- 
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maxH(aqC) = max H(z) = max H<ax) = max apH(x) = aPmaxH(C). 
zeS,, xeS, xes. i l 1 

Theorem 2:   If f(x)  is isobaric, then f(x)  has a derivative, denoted  f (x), 

along the curve  a^, where  a  is a parameter.   Furthermore, f'(x) = (p/qx)f(x). 

Proof:   f'W  =  limit i(^C) - f(x) = limit apf(x) - f(x) = f(x) limit aP -J. = (p/qx)f(x). 

aq-.l   aqx-x aq-.l     aqx - x x    aq-*laq-l 

Corollary 1:  Under the conditions of theorem 1, if there is only one constraint 

then maxH(C)  and  minH(C)  (if they exist) are of the form ACP//q    where   A 
is a constant. 

Proof-  Using theorems 1 and 2, the functions   maxH and  minH  satisfy the dif- 
ferential equation 

df(C)/dC  =  (p/qC)f(C) 

which has the general solution f(C)  = ACp/q. 

Comment 1:  This corollary is the primary result of this section.   If the direct 

method is used, only one guess for the value of the LM need be made since 

the resulting values of  C and maxH(C) can be used to evaluate "A" and obtain 

the entire solution.   This finds application in the classical method, also.   After 

the partial derivatives have been equated to zero, the resulting system may be 

impossible to solve in terms of the   LM as a general parameter.   It suffices, 

however, to solve the system for only one value of the LM .   Example 7 

illustrates these ideas. 

Comment 2;   A gap or constant multiplier can be immediately spotted by 

examining p/q.   A simple technique for remedying an unfavorable  p/q will be 

presented in section VIII. 

Comment 3;   The proof of theorem 2 does not require the isobaric property for 

all values of a, merely for values of a in some neighborhood of a = 1 . 

Similarly, theorem 1 remains valid for all values of a for which the functions 
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involved are homogeneous.   Hence, corollary 1 holds providing only that the 

functions involved are all homogeneous for values of a  within some neighborhood 

of a = 1 .   The utility of this is that many functions occurring in practical problems 

are homogeneous for restricted values of a, e.g., functions involving absolute 

values may require  a to be non-negative. 

Comment 4:   Functions which are piecewise defined as, for example, 

f(      )= j x + 3y, x^2 1 
IKX,y}     l2x+   y, x<2 J 

are not necessarily homogeneous along the boundaries common to the various 

pieces.   This is in spite of the fact that the degree of homogeneity may be the 

same within each separate piece.   The problem is that of proper continuity at the 

boundary (see comment 3, above).   Homogeneous functions may be discontinuous, 

but their discontinuities must be of a rather specific type; in particular, the 

homogeneous function must be continuous along all radial curves. 

There is an analogous result for the multi-constraint case. 

Lemma 1;   If the function maxH is differentiable, it obeys the first order linear 
partial differential equation 

)   q.x.f    = pf 
ZJ   n i x.    * 

proof;  Differentiate both sides of the equation f(aqx) = aPf(x) with respect to 
a ,   and let  a go to 1. 

Comment 1:   The differentiability of the function f must be assumed.   Theorem 

2 guarantees the existence of only one directional derivative; the part'als may not 

exist. 

Comment 2;   This partial differential equation is readily solved, giving 

G(fq/xP) = 0 

where  G  is an arbitrary function.   If a suitably well behaved boundary condition 

were abailable in the form  maxH(C) = M(t) along a known curve  C{t), where 

t is a parameter, then the arbitrary function G could be analytically determined. 

In most practical applications,   the boundary conditions will be analytically 
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unsuitable, or unknown.   In the former case, numerical integration of the 

partial differential equation may be successful; in the latter case, the direct 

method may be tried.   It may be possible to approximate a boundary condition 

arbitrarily closely by varying the  LMs   so as to sketch out   M(t) along some 
arbitrary curve   C(t). 
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VIII.   GENERALIZATIONS 

In applications of the classical method, it is common to maximize log(H(x)) 
2 

or (H(x))   if these are more tractable analytically, since "maximizing these 

is the same as maximizing H(x)".   In general it is true that if G is any 

monotonically increasing (strictly) function, then  G(H(x)) attains its maximum 

at the same point x'   as the function H(x).   This fact is of fundamental impor- 

tance in the direct method because the function  G  changes the shape of the 

payoff set.   A proper choice of  G can eliminate a gap or can eliminate the 

"constant multiplier" without changing x*  (example 6). 

The constraint functions may also be modified into  G(g(x)) = C.   This 

modification also changes the shape of the payoff set and can be used instead of., 

or in addition to, modifying H(x).   These two types of modifications have 

inverse effects on the shape of the payoff set, however (example 6). 

The single constraint problem with homogeneous functions can often be 

effectively handled using these concepts.   If the ratio of degrees of homogeneity 

(p/q  of the preceeding section) is unfavorable,   G can be chosen homogeneous of 

the proper degree to guarantee that no gap exists (example 6). 

It is sometimes possible to retain the  LMs as parameters in the direct 

method and still perform the maximization required in step 2, section II.   This 

requires that x* be obtainable as a function of the parameter X.   If non- 

differentiable functions are involved, then x'fX) will probably be non-analytic 

and must be examined point at a time.   Example 8   illustrates a case where 

the classical method will not work, but the direct method applies; the maximi- 

zation (minimization in this case) can be done analytically, retaining the  LM 

throughout as a parameter. 

-21- 



References: (a) "Generalized Lagrange Mulitiplier Method for Solving Problems 

of Optimum Allocation of Resources", by H. Everett III. ORSA 

Journal, Vol. 11, No.3, May - June,  1963 

(b) OEG Study 639, Classified. 

-22- 



APPENDIX A 

MISCELLANEOUS EXAMPLES 

Example 1:   This problem illustrates the direct method when the set  S   is a 

collection of discrete points. 

Maximize   |x   - 2y I   subject to  x + y2 = 3 where  S consists of the 

collection of points   (0,1), (2,1), (4,1). (3,0), (1,2). 

Step 1:   F(x,y)= lx2 - 2y | - x (x + y2) . 

SteP 2:  lt is apparent that in order to maximize   F(x, y) we must plug in each of 

the points in S   in turn and evaluate  F(x, y)  at each point.   Further, we can- 

not investigate   F(x, y)  numerically for a maximum so long as the   LM  is a 

parameter.   It is necessary to insert a numerical value for  K, then proceed 

with that value into step 3.   Listed below are the results of three guesses for \. 

X poTntT)^ H(X,) «(x') F(x') 

10 (0,1) 2 1 -8 
1 (4,1) 15 5 9 
3 (3,0) 9 3 0 

The first guess,  \ = 10, gave a maximum of   -8 to  F(x,y), the maximizing 

point being (0,1).   Proceeding into step 3, g(0,1) turns out to be 1.   Since the 

original problem specifies the constraint g(x, y) = 3, the value of 10 for the  LM 

is unsatisfactory and another guess must be made.   In section IIit will be made 

clear that the   LM  must be decreased in order to increase the resulting value 

of g(x,y).   A guess of 1 for  \ produces a constraint value of 5, i.e., the   LM 

has been decreased too much.   A guess of 3 for   \ finally produces  g(x, y) = 3, 

as desired.   According to the main theorem, section I, the point (3,0) maximizes 

H(x,y)  subject to  g(x,y) = 3. 

Similar problems involving larger sets  S , more constraints, and more 

complex functions can be solved in exactly this way, using a computer to 
evaluate the functions. 
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Example 2:   This problem illustrates how the function "minH" comes into being. 

It is desired to find the minimum distance from the origin of the  x, y  plane 

to the curve defined by xy = b, for b > 0 .   The problem is trivial and can be 

solved readily in a variety of ways; by sketching the graph of xy = b  for some 
1/2 

value of b it will become obvious that the solution must be  x = y = (b)      . 
2      2 1/2 For this problem   H(x, y) = (x   +y)      .   Plugging in the solution, H(x, y)  be- 

1/2 1/2 comes   (b + b) '     or  (2b) '   , which is no longer a function of x and  y, but 

of the parameter b .   This resulting function of b  is   minH(b). 
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Example 3: This problem illustrates how the geometric interpretations of the 

functions minH(C) and g(x) may be used to estimate the values of the LMs. 

In this example, these considerations permit an exact solution. 

It is desired to find the minimum distance between the line  x + y = a and 

the square  max( |x |,   |y |) = b, where the values of a and  b are such that the 
9 

two figures are not intersecting.   In this problem,   H(x., y., x0, y0) = ((y. - y0)  + 

(x1 -x2) ) /   , g1(x1,y1,x2,y2) = x1 + y1, and g2(x1, y1,x2,y2) = max( |x2 |, |y2 |), 

where the subscript "1" refers to the line, and "2" refers to the square.   The 

reader is requested to examine the representative figure below and use the 

interpretation of the   LMs  as partial derivatives, along with the geometric in- 

formation, to evaluate the  LMs  directly. 

(x,, y,) 

Solution:   The function minH(a,b)  has the geometric interpretation of minimum 

distance, hence   \,   is the derivative of this distance with respect to "a", and 

\2  is the derivative with respect to "bM.   An increase of a by one unit causes 

1/2 1/2 an increase in minH(a,b) by 1/(2) '     units, hence   \, = 1/(2) '   .   Similarly, 

an increase of b  by one unit causes a decrease in minH(a, b)    by one unit, 

hence   X« = —1 . 

Note that the values of the partial derivatives are independent of both a 

and b.   This is untypical; usually the   LMs   are functions of all of the constants. 
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Example 4:   This is a cell problem in which  H(x)  is non-differentiable. 

Maximize   H(x) = H^x^ + H2(x2)  subject to the constraint  g(x , xj = 

x1 + x2 = 5, where H^x^ = x^lO - xj and   H2(x2)  is as shown. 

m  X, 

1 2 3 
F(x) can be written in the form 

[H^)-^]   +  [H2(X2)-U2] 
and each of the terms in brackets can be maximized separately.   The first 

bracket can be maximized analytically, yielding a maximum at x. = 5 — X/2. 

The second bracket is not differentiable at all points and must be maximized 

by considering separate values of   X .   This can be done by inspection, in this 

example, since the graph of  H2(x2)  is available; however, if  R,  were more 

complex, it might be necessary to divide up the  x2  axis into small increments 

and let a computer search for the maximum.   The table below summarizes the 

results of various Jesses of the LM . 

2 
3 
4 

1 

4 
3.5 
3 

2-5 
2 
2 

x1+x2 

6-9 
5.5 
5 

H1(x1.x2)      H2(x1.x2)     H(xrx2)    F(xrx2) 

24 
22.75 
21 

-16 34-40 22 
10 32.75 16.25 
10 31 11 
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The point x' = (3,2)  satisfies the constraint g^, x2) = Xj + x   = 5, hence 

it is the desired point, giving a maximum value of 31 to  H(x , x ).   Note that 

for   X = 2, the maximizing point  x'   is not unique since  x2   may vary between 

2 and 5, producing a corresponding variation in H(x1, x ) (but not in F{K , x,)). 

This is the "constant multiplier" discussed in section IV.   Note that as the   LM 

is varied from 3 to 4, x2 remains constant at 2.   This is because hL is non- 
differentiable, and is discussed in section IV. 

As the   LM is varied from 2 to 4, various values of g<x , x») and their 

accompanying values of H^, x2)  are also generated.   The plot of H(x , x,) vs 

gCxj, x2)  is discussed in detail in sections III and IV, and is fundamental to the 
study of LMs. 

This problem is handled in a straightforward way using the direct method. 

The classical method cannot handle it since H2(x2) is not differentiable at the 
maximizing point. 

A-5 



Example 5:   This problem illustrates a straightforward application of the 
classical method. 

Find the minimum distance from the origin to the subspace determined by 

the intersection of the two hyperplanes 

a.x = C1 

b.x = C2 

where the dot product notation has the usual interpretation 

i.x =  )  a.x.    . 
1 

Solution:   For this problem, H(x) = (x.x)1/2, however the square of this will be 

minimized instead since it is more tractable analytically.   This technique is 

discussed in section VIII. 

Step 1:   F(x) = x.x - X a.x - \2b.x 

Step 2:   Equating the partial derivatives to zero gives the vector equation 

2x - X^ - ^ = 0 

from which  x  can immediately be expressed as a function of the LMs . 

x= l/2(X1a + X2b) 

Step 3:   This vector x can be plugged into the constraint equations, giving: 

^a.a + X2a.b = 2C. 

X1b.a+ X2b.b = 2CL 

Since the dot products can be calculated directly, the above equation in the two 

unknowns   X1,  X2 can be solved by Cramer's rule to give the LMs as functions 

of C^ C2 .   The determinant D  is 

(a.a) (b.b) -  (a.b)2 
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which, by tht Cauchy-Schwarz inequality, is non-zero unless the vectors   a 

and b are colinear.   In this case, the two planes are parallel and intuition 
agrees that there is no solution.   Solving for the LMs 

\1 =2(C1b.b -C2 a.b)/D 

\2 = 2(-C1a.b + C2a.a)/D 

These values can be plugged into the expression for  x, giving x as a function 

ofCj, C2 .   The expression x.x  can then be evaluated giving, finally, 
minH(Cr C£. 

A faster method, however, is to take the equation for  x , dot both sides 

with "x", and evaluate at the minimizing point, giving: 

minH(C1, C2 = 1/2(^01 + ^C^ 

C^b.b -2C1C2a.b + C2
2a.a 

= D _ 

This savings in labor is always possible if the functions   H(x)  and g.(x) are 
homogeneous (section VIII). i 
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Example 6:   This problem can be solved immediately by the classical method, 

but cannot be solved by the direct method unless one or more of the functions 

is modified to eliminate the "gap".   A few possible modifications are illustrated, 

2      2 1/2 
Minimize   (x   + y ) '     subject to the constraint  g(x, y) = xy = b, with 

b > 0.   S   is the first quadrant of the   x,y  plane.   The classical method gives 

the solution  x = y = ih)l/2,  \ = l/(2b)1/2, minH(b) = (2b)1/2.   The payoff set 

in the  g, H  plane is shown below. 

The function minH(b)  is concave downward, hence the entire positive g 

axis (except the origin) is a "gap" and the direct method will fail (the inequality 

of section III is reversed here since a minimum is desired). 

"We can modify the shape of the payoff set so as to eliminate the gap by 

modifying either   H(x,y), g(x,y)  or both, appropriately.   If G(H)  is a 

monotonically increasing function of  H  in the region of interest, then 

G(H(x, y))  can be used in place of  H(x, y).   Furthermore, the gap will be 

reduced or eliminated.   Alternately, if  G*(g) is a monotonically decreasing 

function of g, then G*(g(x, y)) can be used in place of g(x, y)  with similar 

results.   The table on the following page summarizes the effect of various 

functions   G  and  G* . 
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G*(g(x,y)) = b X minG(H(b)) X 

xy = b (b)"2 2b 2 

(*y)1/2 ■ b b (2)1/2b (2)l/2 

(*y)1/2 - b b 2b2 4b 

xy = b (b)1/2 4b2 8b 

G(H(x, y)) 

2^   2 x   + y 

/ 2 ^   2,1/2 (x   + y ) ^ 
2 .    2 x   + y 

/ 2 ^   2,2 (x   +y ) 

The first row shows the effect of using G(H) = H2, while retaining the 

same constraint function.   The minimizing point is still at  x = y = (b)1/2, 

producing minG(H(b)) = 2b or minH(b) = (2b)1/2  as expected.   The LM, 

however, has changed from l/(2b)1/2  to  2, i.e.,   X is constant for all 

values of b; we now have the "constant multiplier".   Since the LM is constant 

for all values of b, the graph of minG(H(b)) is a straight line with slope 2, 

i.e., the graph is no longer concave downward, but is a straight line.   This 

is progress in the right direction.   If instead, we use  G(H) = H, but 
1/2 

G*(g) = g        as in the second row, the result is similar, a constant multiplier, 

but with a different value.   The last two rows show the effects of combining G 

and G*.   The resulting functions  minG(H(b)) are concave upward, no gap 

exists, and the direct method would solve the problem easily. 

Since this is a single constraint problem involving homogeneous functions, 

the results of using the functions   G and G*  above can be read off directly by 

inspection, without having to solve the problem first.   This would permit the 

analyst to make an appropriate choice of G and G*  prior to attempting the 

direct method.   Using corollary 1, section VII, "p/q" for each of the examples 

in the above table is 1,1,2,2 (descending order).   These match with the 

exponents of "b" in the column headed "minG(H(b))". 
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Example 7:   This problem illustrates some of the simplifications which may be 

possible in the direct method if the functions involved are homogeneous. 

n n 
It is desired to minimize H(x)=) a.x.   subject to  g(x) = )    |x. j1'    = C. 

S   is all of n-space. 1 1 

Solution:   The n-space surface  g(x) = C has cusps at +C    on each of the 

coordinate axes.   A little reflection about the shape of this surface will make 

it clear that the minimizing point(s) must be one (or more) of these cusps, at 

which  g(x)  is not differentiable.   Hence, the classical method cannot be ex- 

pected to work.   If n  is small, it may be practical to locate the desired cusp 

by hand calculations, but if  n  is large, and several values of C  must be 

examined, computer assistance will be welcome. 

The functions   H(x), g(x)  are homogeneous of degree 1,  1/2, respectively, 

hence  p/q = 2, and the direct method will work.   The function minH(C)  is of 
2 

form  AC , so that any guess greater than zero for the LM should produce a 

meaningful result. 

After making a guess for the LM (\ = 1, say), a computer may easily be 

programmed to evaluate  F(x)  at each of the cusps, determine the minimizing 

cusp, and print out the resulting C  and minHCC).   These values are plugged 

into the equation 

minH(C) = AC2 

2 
giving the result that  A = minH{C')/C'  .   This solves the problem for all 

values of C. 
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Example 8:   This problem illustrates the direct method in which the LM re- 

mains as a parameter throughout the minimization. 

Find the minimum of  H(x, y) = x2 + y2  subject to the constraint  g(x, y) = 

y -(x-l)3/2 = 2. 

Step 1:   F(x, y) = x2 + y2 - \y + X(x-1)3/2 

SteP 2:   F(x. v)   can be minimized with respect to  x  by inspection, obtaining 

x = 1   as the minimizing value (note that  x  cannot be less than 1 because of 

the exponent).   FCx.y)  reduces therefore to y2 - \y + 1  which is parabolic 

in  y.   This function has a minimum at  y = \/2. 

SteP 3:   Hence  g(x,y) becomes   \/2.   By the main theorem, section I, we know- 

that the point x' = (1,  \/2) provides an absolute minimum for  H(x, y).   By 

setting   X = 4, the required constraint  g(x, y) = 2  is satisfied. 

Although it is not obvious by inspection of the problem, the classical method 

will fail to solve this problem since the partial derivative of F(x, y), with 

respect to  x, does not exist at the minimizing point.   The constraint function 

g(x, y)  is in fact discontinuous at the minimizing point. 

There is no need to guess a value for the LM in step 2 since the minimiza- 

tion done there holds for all positive values of the LM (at least) rather than a 

single value.   Normally, when discontinuous functions are involved, the minimiza- 

tion must be done numerically, which requires that the LM be assigned some 

definite value. 
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